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概要
これは局所表示可能圏のノート．
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0 はじめに
局所表示可能圏 (locally presentable category)とは，すべての対象が表示可能対象 (presentable

object)の集合から生成されているような余完備圏のことであり，[GU71]において導入された．こ
れは「大きい圏」を扱いながらも，その構造が小さなデータ（表示可能対象）によって完全に制御
される圏のクラスであり，随伴関手定理の成立など極めて重要な性質を持つ．集合の圏や加群の
圏，圏の圏，トポスなど，実際に現れる圏の多くが局所表示可能圏となる．
本稿では，局所表示可能圏および到達可能圏 (accessible category)の理論について解説する．1

節では，フィルター圏などの圏論の基本事項を確認する．細かなフィルター圏の性質に関しては，
付録 A節で証明を与えた．2節では，局所表示可能圏の基本的な性質を述べる．
基本文献は，[MP89] と [AR94] である（後者はよく間違いがあり注意が必要である [AR13]）．

[Bor94, Ch. 5] にも簡潔にまとまっている．[Sar17] に入門的な短い解説がある．日本語だと
[Ziphil]の「局所表示可能圏と到達可能圏」のノートが参考になる．

注意 0.1. • 圏は局所小であるとする．
•（余）極限は常に小圏上で考える．
• 正則基数といえば，正則無限基数のことを指す．
• 基数 λに対し，その後続基数を λ+ で表す．
• 集合 X に対し，|X|で X の濃度を表す．
• 集合の圏を Setで表す．
• 小圏 C に対し，C 上の前層圏を Ĉ で表す．
• 小圏 C に対し，その米田埋め込みを y : C ↪→ Fun(Cop, Set) = Ĉ とする．
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1 予備知識
1.1 有向集合とフィルター圏
順序集合 J が有向 (directed)であるとは，任意の i, j ∈ J に対して i ≤ k かつ j ≤ k となる元

k ∈ J が存在するときをいった．フィルター圏は有効集合の定義を圏に拡張したものである：

定義 1.1. 圏 J がフィルター (filtered)*1であるとは，

(1) J は空でない
(2) J の任意の対象 i, j に対して，ある k ∈ J と射 i→ k，j → k が存在する
(3) J の任意の平行射 u1, u2 : i→ j に対して，ある射 v : j → k が存在して，v ◦ u1 = v ◦ u2

が成り立つ

をみたすときをいう．

順序集合 J を圏とみなすとき，J がフィルター圏であることは有向集合であることと同値で
ある．
これをさらに正則基数に対して一般化したものが次である：

定義 1.2. λを正則基数とする．圏 J が λ-フィルター (λ-filtered)であるとは，

(1) J は空でない
(2) J の対象から成る集合 {il}l∈L で濃度が λ 未満のものに対して，ある対象 k ∈ J と各

l ∈ Lについて射 il → k が存在する
(3) J の任意の対象 i, j と，射の集合 {ul : i → j}l∈L で濃度が λ未満のものに対して，ある
射 v : j → k が存在して，すべての l, l′ ∈ Lについて v ◦ ul = v ◦ ul′ が成り立つ

をみたすときをいう．

最も簡単な例として，終対象を持つ圏は λ-フィルター圏である．

注意 1.3. • λ = ℵ0 を自然数全体のなす正則基数とすると，ℵ0-フィルター圏とはちょうど
単なるフィルター圏のことである．

• 正則基数 λ < µに対して，µ-フィルターならば λ-フィルターである．特に任意の正則基
数 λについて λ-フィルター圏はフィルター圏である．

*1 filtrantとも呼ばれる [KS06]．
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定義 1.4. λを正則基数とする．小圏 I が λ-小 (λ-small)であるとは，射の集合の濃度 |mor(I)|
が λ未満であるときをいう．
圏 C がすべての λ-小（余）極限を持つとき，C は λ-（余）完備 (λ-(co)complete)であるという．

注意 1.5. λ = ℵ0 のとき，ℵ0-小な圏とはちょうど有限圏のことである．

補題 1.6. λを正則基数とする．圏 J に対して，次は同値である：

(i) J は λ-フィルター圏である．
(ii) 任意の λ-小な部分圏 I ⊂ J に対して，包含関手 I ↪→ J 上の余錐が存在する．

Proof. 補題 A.2．

この補題により，特に λ-余完備な圏は λ-フィルター圏である．
フィルター圏が注目される一番の理由は，集合の圏 Setにおいて次が成り立つからである．

定理 1.7. λを正則基数とする．集合の圏 Setにおいて，λ-フィルター余極限は λ-小極限と交換
する．すなわち，任意の λ-フィルター圏 J と λ-小圏 I，関手 F : I × J → Setに対して，自然
な写像

colim
j∈J

lim
i∈I

F (i, j)→ lim
i∈I

colim
j∈J

F (i, j)

は同型である．

Proof. 定理 A.5．

次の結果から，すべてのフィルター余極限は有向余極限と思ってよいことがわかる．

定理 1.8. λを正則基数とする．任意の λ-フィルター圏 J に対して，ある有向集合 I と終関手
H : I → J が存在する．特に任意の図式 F : J → Kに対し，自然な射

colimI(F ◦H)→ colimJ F

は同型射である．

Proof. 命題 A.18および系 A.13．

命題 1.9. λを正則基数とする．λ-フィルター圏 J の充満部分圏 J ′ ⊆ J に対して，条件

• 任意の対象 j ∈ J に対し，ある対象 k ∈ J ′ と J における射 j → k が存在する

が成り立つとき，J ′ は λ-フィルター圏であり，包含 J ′ ↪→ J は終関手である．

Proof. 命題 A.17．
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1.2 普遍随伴
普遍随伴について基本事項を述べておく．詳細は [ペ 21]や [alg-da]を見よ．
関手 F : C → D について，C は小圏であるとする．

命題 1.10. 小圏からの関手 F : C → D に対して，関手 RF を

RF : D → Ĉ, d 7→ HomD(F (−), d)

とする．このとき RF は，F に沿った米田埋め込み y : C ↪→ Ĉ の左 Kan拡張 LanF yになる．

定義 1.11. （共変）関手 F : C → Setに対して，その要素の圏 (category of elements) Elts(F )

を以下で定まる圏とする．

• Elts(F )の対象は，対象 C ∈ C と元 x ∈ FC の組 (C, x)とする．
• Elts(F )の射 f : (C, x) → (C ′, x′)は，C の射 f : C → C ′ であって F (f)(x) = x′ をみた
すものとする．

標準的な射影 Π: Elts(F )→ C が存在する．
反変関手 F : Aop → Setに対して，∫ F := Elts(F )op とおき，これも F の要素の圏と呼ぶ．標
準的な射影 ∫

F → Aが存在する．

定理 1.12. 関手 F : C → D について，C は小圏とする．D が余完備であるとき，

(1) F の米田埋め込み yに沿った左 Kan拡張 Lany F : Ĉ → D が存在し，これは

Lany F (P ) ∼= colim(
∫
P

Π−→ C F−→ D̂)

で与えられる．ここで ∫
P は前層 P の要素の圏で，Π:

∫
P → C は自然な射影である．

(2) さらに随伴 Lany F a LanF yが成り立つ．

定理 1.12で得られる随伴 Lany F a LanF yを，F に付随する普遍随伴と呼ぶ．*2

命題 1.13. 関手 F : C → D について，C は小圏とする．

(1) D における図式 D : I → D に対して，関手 RF = LanF y : D → Ĉ が D の余極限を保つ
ことと，各 C ∈ C について HomD(FC,−) : D → Setが D の余極限を保つことは同値で
ある．

(2) LanF yはすべての極限を保つ．

*2 この随伴 Kanによって証明されたので，Kan随伴と呼んだ方がいいかもしれない．

5



Proof. (1) D 上の余極限余錐 {Di → L := colimD}i をとるとき，

RF が余極限 {Di → L}i を保つ
⇐⇒ {RF (Di)→ RF (L)}i は Ĉ の余極限である
⇐⇒ 各 C ∈ C について {RF (Di)(C)→ RF (L)(C)}i は Setの余極限である
⇐⇒ 各 C ∈ C について {HomD(FC,Di)→ HomD(FC,L)}i は Setの余極限である
⇐⇒ 各 C ∈ C について HomD(FC,−)が余極限 {Di → L}i を保つ

となるから，主張が従う．(2)も同様である．

定義 1.14. 圏 Dの小さい部分圏 C が稠密 (dense)であるとは，包含関手を ι : C ↪→ D としたと
き，関手 Lanι y : D → Ĉ が充満忠実であるときをいう．

定義 1.15. 圏 D の対象 dと小さい部分圏 C に対して，余極限

colim(C ↓ d→ C → D)

のことを C に関する dの標準的な余極限 (canonical colimit)と呼ぶ．標準的な余極限の普遍性
より得られる射

colim(C ↓ d→ C → D) −→ d

が同型であるとき，dは標準的な余極限で表せるという．

命題 1.16. 圏 D の小さい部分圏 C に対して，次は同値である：

(i) C は稠密な部分圏である．
(ii) 任意の対象 d ∈ D は，C に関する標準的な余極限で表せる．

Proof. 合成関手 C ↓ d→ C ↪→ Dを F で表す．対象 d′ ∈ Dに対して，コンマ圏の性質から全単射

HomFun(C↓d,D)(F,∆d′) ∼= HomFun(Cop,Set)

(
Hom(−, d)|C ,Hom(−, d′)|C

)
が成り立つ*3．よって

(Lanι y)dd′ : HomD(d, d
′)→ HomFun(Cop,Set)

(
Hom(−, d)|C ,Hom(−, d′)|C

) が同型
⇐⇒ HomD(d, d

′) ∼= HomFun(C↓d,D)(F,∆d′) = Cocone(F, d′)

となる．後者は d′ ∈ D について自然であるから，

すべての d′ について (Lanι y)dd′ が同型 ⇐⇒ d ∼= colimF

となる．

*3 たとえば [Rie17, Lemma 6.3.8]や [alg-da, 補題 24]をみよ．
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注意 1.17. 上の状況で，C ↓ d ∼=
∫
Hom(−, d)|C であることに注意．したがって D が余完備の

とき，標準的な余極限からの自然な射

Lany F (Hom(−, d)|C) = colim(C ↓ d→ C → D) −→ d

は，包含 ι : C ↪→ D に付随する普遍随伴 Lany ι a Lanι yの counitの d成分に他ならない．
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2 局所表示可能圏と到達可能圏
2.1 λ-表示可能対象

定義 2.1. λを正則基数とする．圏 Kの対象K ∈ Kが λ-表示可能 (λ-presentable)であるとは，
関手 HomK(K,−) : K → Setが λ-フィルター余極限を保つときをいう．
対象 K ∈ K が表示可能 (presentable)であるとは，ある正則基数 λについて λ-表示可能とな
るときをいう．

圏 Kの λ-表示可能な対象のなす充満部分圏を Presλ(K) ⊆ Kで表す．

注意 2.2. • λ = ℵ0 のとき，ℵ0-表示可能対象を有限表示可能対象 (finitely presentable

object)とも呼ぶ．
• 正則基数 λ < µに対して，λ-表示可能ならば µ-表示可能である．特に有限表示可能対象
は，任意の正則基数 λについて λ-表示可能である．

命題 2.3. λを正則基数とする．圏 Kの対象K ∈ Kに対して，次は同値：

(i) K は λ-表示可能である．
(ii) K における任意の λ-フィルター図式 D : I → K と余極限余錐 {si : Di → C}i∈I に対し
て，次が成り立つ．

(ii-a) 任意の射 f : K → C に対して，ある対象 i ∈ I と射 g : K → Di が存在して，f は
f = si ◦ g と分解する．

(ii-b) 任意の射 g : K → Di と g′ : K → Di′ に対して，si ◦ g = si′ ◦ g′ となるとき，ある I
の射 u : i→ j と u′ : i′ → j が存在して，D(u) ◦ g = D(u′) ◦ g′ となる．

Proof. 集合の圏におけるフィルター余極限の構成（命題 A.4）および集合の間の写像

colimi∈I HomK(K,Di) −→ HomK(K,C)

が全単射であることから確認できる．

命題 2.4. λを正則基数とする．このとき λ-表示可能な対象の λ-小余極限はまた λ-表示可能で
ある．

Proof. 圏 K において，{Kj}j∈J を λ-小図式とし，各 Kj が λ-表示可能であるとする．その余極
限をK = colimj Kj とおく．このとき，任意の λ-フィルター図式 {Di}i∈I に対して，集合の圏で
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λ-フィルター余極限と λ-小極限が交換することを使うと

HomK(K, colimi Di) = HomK(colimj Kj , colimi Di)

∼= limj HomK(Kj , colimi Di)

∼= limj colimi HomK(Kj , Di)

∼= colimi limj HomK(Kj , Di)

∼= colimi HomK(colimj Kj , Di)

= colimi HomK(K,Di)

となる．よってK も λ-表示可能である．

注意 2.5. 命題 2.4より，PresλK ⊆ Kは Kに存在する λ-小余極限で閉じる．特に Kが余完備
のとき，PresλKは λ-小余完備となる．

系 2.6. λ を正則基数とする．このとき λ-表示可能な対象のレトラクトはまた λ-表示可能で
ある．

Proof. 圏 K において，K を λ-表示可能対象とし，L
s−→ K

r−→ Lをそのレトラクトとする．この
とき f := s ◦ r : K → K とおくと，Lは冪等射 f の余極限となる．これは λ-小余極限であるから，
命題 2.4より Lも λ-表示可能となる．

2.2 局所 λ-表示可能圏と λ-到達可能圏

定義 2.7. λを正則基数とする．圏 Kが局所 λ-表示可能 (locally λ-presentable)であるとは，次
の二条件をみたすときをいう．

(1) Kは余完備である．
(2) λ-表示可能対象から成る集合 A が存在して，すべての K の対象が A の対象の λ-フィル
ター余極限で表せる．

圏 K が単に局所表示可能 (locally presentable)であるとは，ある正則基数 λについて局所 λ-

表示可能なときをいう．

定義 2.8. λを正則基数とする．圏 Kが λ-到達可能 (λ-accessible)であるとは，次の二条件をみ
たすときをいう．

(1) Kは λ-フィルター余極限をもつ．
(2) λ-表示可能対象から成る集合 A が存在して，すべての K の対象が A の対象の λ-フィル
ター余極限で表せる．

圏 K が単に到達可能 (accessible)であるとは，ある正則基数 λについて λ-到達可能なときを
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いう．

注意 2.9. λを正則基数とする．圏 Kに対して

Kは局所 λ-表示可能 ⇐⇒ Kは余完備かつ λ-到達可能

である．特に λ-到達可能圏で成り立つことは，局所 λ-表示可能圏でも成り立つ．

注意 2.10. λ = ℵ0 のとき，局所 ℵ0-表示可能圏を局所有限表示可能圏 (locally finitely pre-

sentable category)，ℵ0-到達可能圏を有限到達可能圏 (finitely accessible category)と呼ぶ．

命題 2.11. 到達可能圏のすべての対象は表示可能である．すなわち K =
⋃

λ: 正則基数 Presλ(K)
が成り立つ．

Proof. Kを λ-到達可能圏とし，対象K ∈ Kを取る．このとき λ-表示可能対象から成る λ-フィル
ター図式 D : I → K が存在して，K = colimi Di となる．このとき λ′ = max{|mor I|+, λ}とす
れば，λ′ ≥ λは正則基数で，colimi Di は λ′-表示可能対象の λ′-小余極限となる．よって命題 2.4

より，K は λ′-表示可能となる．

命題 2.12. λを正則基数とする．Kを λ-到達可能圏とし，Aを定義に出てくる λ-表示可能対象
から成る集合とする．このとき，すべての λ-表示可能対象K は Aの対象のレトラクトである．

Proof. K が λ-到達可能圏であることから，K ∈ K に対して，Aの対象から成る λ-フィルター図
式 {Di}i で K = colimi Di となるものが存在する．ここで K が λ-表示可能であることから，あ
る iにおいて

K Di

K = colimi Di

idK

si

を可換にする射K → Di が存在する．このときK は Di ∈ Aのレトラクトとなる．

系 2.13. λ-到達可能圏 Kにおいて，λ-表示可能な対象のなす充満部分圏 Presλ(K) ⊆ Kは本質
的小である．

Proof. 命題 2.12より，すべてのK ∈ PresλKはある A ∈ Aのレトラクトである．A ∈ Aのレト
ラクトは，同型の差を除いて冪等射A→ Aと一対一に対応し，それらはたかだか集合HomK(A,A)

の濃度の数しかない．したがって PresλK の同型類の全体は，たかだか集合
⋃

A∈A HomK(A,A)

で抑えられる．よって PresλKは本質的小である．

以下 PresλK ⊆ Kを，その同型類の代表元からなる小圏と同一視してしばしば小圏として扱う．
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次の命題が最も基本的である*4．

命題 2.14 (到達可能圏の基本命題). λ-到達可能圏 Kに対し，A := Presλ(K)とおく．

(1) 対象K ∈ Kに対して，コンマ圏 A ↓ K は λ-フィルター圏である．
(2) 充満部分圏 A ⊆ K は稠密である．すなわち任意の対象 K ∈ K は Aに関する標準的な余
極限で表せる．

(3) 包含関手 ι : A ↪→ Kとするとき，関手 Lanι y : K → Âは充満忠実かつ λ-フィルター余極
限を保つ．

Proof. 対象K ∈ Kに対し，λ-表示可能対象から成る λ-フィルター図式D : I → KでK = colimD

となるものを取り，その余極限余錐を {si : Di → K}i とする．対象 i ∈ I に対しその値を
F (i) = (Di, Di

si−→ K)とすることで関手

F : I → A ↓ K

が定まる．このとき F は終関手である．

∵) 命題 A.15の条件 (a), (b)が成り立つことを確認する．
(a) 任意の (A, s : A → K) ∈ A ↓ K に対して，A が λ-表現可能であることから，ある

i ∈ I が存在して
A Di

K

s
si

と分解する．この分解は，A ↓ K の射 (A, f)→ (Di, si) = F (i)が存在することを意味する．
(b) A ↓ K の射 g, g′ : (A, f) → F (i) = (Di, si) があるとする．si ◦ g = fki ◦ g′ が成
り立つから，A が λ-表現可能であることより，対象 i′ ∈ I と射 u, u′ : i → i′ が存在して，
D(u) ◦ g = D(u′) ◦ g′ となる．I は λ-フィルター圏であるから，射 v : i′ → i′′ が存在して
v ◦ u = v ◦ u′ となる．このとき w := v ◦ uとおくとD(w) ◦ g = D(w) ◦ g′ が成り立つ．これ
は A ↓ K の射として F (w) ◦ g = F (w) ◦ g′ であることを意味する．

(1) λ-フィルター圏からの終関手 F : I → A ↓ K が存在するから，命題 A.14より A ↓ K も λ-

フィルター圏である．
(2) F が終関手であることを用いると

colim(A ↓ K → A ↪→ K) ∼= colim(I F−→ A ↓ K → A ↪→ K)
∼= colim(I D−→ K) = K

となるから，K は Aに関する標準的な余極限で表せる．

*4 基本命題という呼び名は本稿だけの用語である．
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(3) 関手 Lanι yが充満忠実であることは (2)から従う．λ-フィルター余極限を保つことは，Aの
対象が λ-表示可能であることと命題 1.13から従う．

系 2.15. λ-到達可能圏 Kにおいて，λ-フィルター余極限は λ-小極限と交換する．

Proof. 命題 2.14 より，K はある前層圏 Â の λ-フィルター余極限で閉じる部分圏になる．前層
圏 Âでの（余）極限は各点で計算でき，Setでの λ-フィルター余極限は λ-小極限と交換する (定
理 1.7)ことから従う．

さらに Kが余完備であるとき（つまり Kが局所 λ-表示可能であるとき），定理 1.12により各点
左 Kan拡張 Lany ιが存在し，これは Lanι yの左随伴となる．

系 2.16. 局所 λ-表示可能圏 Kはある前層圏の反映的部分圏となる．特に Kは完備である．

Proof. 定理 1.12 と命題 2.14 より，随伴 Lany ι a Lanι y が存在し，右随伴は充満忠実である．
よって Kは Âの反映的部分圏となる．

局所表示可能圏については，さらに良い特徴づけが存在する．

定義 2.17. 圏 Kの対象の集合 G = {Gi}i が保守的集合 (conservative set)であるとは，Kの射
f に対してすべての iで Hom(Gi, f)が同型であるならば f は同型となるときをいう．

定義より，稠密部分圏は保守的集合である．

定理 2.18. 圏 K が局所 λ-表示可能であることは，K が余完備かつ λ-表現可能対象からなる保
守的集合を持つことと同値である．

Proof. (必要性): Aを局所 λ-表示可能圏の定義に現れる集合とすると，Aが保守的集合になるこ
とが容易に確認できる．あるいは命題 2.14 より Presλ(K) は稠密部分圏であり，特に保守的集合
になる．
(十分性): 余完備な圏 K が λ-表現可能対象からなる保守的集合 G を持つとする．K における G
の λ-小余極限に関する閉包を Aとすると，Aは本質的小である*5．命題 2.4より A ⊆ Presλ(K)
であり，また A ⊆ Kが λ-小余極限で閉じる充満部分圏であることからコンマ圏 A ↓ K は λ-余完
備であり，特に λ-フィルター圏である．したがってあとは，自然な射

φ : K0 := colim(A ↓ K → A ↪→ K)→ K

が同型であることを示せれば十分である．ここで G が保守的集合であることから，任意の G ∈ G
に対して

φ ◦ − : Hom(G,K0)→ Hom(G,K)

*5 たとえば [Bor94, Lemma 5.2.4]の証明を見よ．
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が全単射となることを示せばよい．余極限 K0 = colim(A ↓ K → A ↪→ K) を表す余錐を
(ιf : A→ K0)(A,f)∈A↓K で表す．

• (全射性): 任意の f : G→ K に対して，(G, f) ∈ A ↓ K を考えると φの構成から

G K0

K

ιf

f
ϕ

は可換となる．よって φ ◦ −は全射である．
• (単射性): 射 a, b : G → K0 について φ ◦ a = φ ◦ b であるとする．G ∈ G は λ-表現可能
で A ↓ K が λ-フィルター圏であることから，ある対象 (A, h : A → K) ∈ A ↓ K と射
a′, b′ : G→ Aが存在して

G A

K0

a′

a
ιh

G A

K0

b′

b
ιh

が可換となる．このとき a′, b′ の coequalizer を (A′, π) とすると，G,A ∈ A より A′ ∈ A
である．ここで

h ◦ a′ = φ ◦ ιh ◦ a′ = φ ◦ a = φ ◦ b = φ ◦ ιh ◦ b′ = h ◦ b′

であるから，coequalizerの普遍性により

G A A′

K

a′

b′

π

h
g

を可換にする g : A′ → K が存在する．π を A ↓ K の射 π : (A, h) → (A′, g) とみなすと，
余錐の自然性より

A A′

K0

π

ιh
ιg

は可換である．このとき

a = ιh ◦ a′ = ιg ◦ π ◦ a′ = ιg ◦ π ◦ b′ = ιh ◦ b′ = b

となり，φ ◦ −は単射である．
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系 2.19. 正則基数 λ < µに対して，局所 λ-表示可能ならば局所 µ-表示可能である．特に局所有
限表示可能圏は，任意の正則基数 λについて局所 λ-表示可能である．

Proof. 注意 2.2と定理 2.18より従う．

しかし，一般に λ-到達可能でも µ-到達可能とはならない場合がある．2.4小節を見よ．

命題 2.20. 圏 Kについて，Kと Kop がともに局所表示可能圏ならば，Kは順序集合と圏同値で
ある．

Proof. [AR94, Theorem 1.64]

例 2.21. λ < µを正則基数とする．

(1) 集合の圏 Set において，λ-表現可能対象はちょうど濃度が λ 未満の集合と同値である．
さらに Setは局所 ℵ0-表示可能圏である．実際，Setは余完備で，一点集合だけからなる
集合 {

{∗}
}が保守的集合をなす．

(2) 順序集合のなす圏 Posにおいて，λ-表現可能対象はちょうど濃度が λ未満の順序集合と
同値である．さらに Posは局所 ℵ0-表示可能圏である．実際，Posは余完備で，二点全順
序集合 {0 < 1}だけからなる集合 {

{0 < 1}
}が保守的集合をなす．

(3) 群のなす圏 Grpにおいて，ℵ0-表現可能対象はちょうど有限個の生成元と有限個の関係式
で表される群と同値である．さらに Grpは局所 ℵ0-表示可能圏である．実際，Grpは余完
備で，整数の群 Zだけからなる集合 {Z}が保守的集合をなす．

(4) 環 R 上の加群の圏 Mod(R)において，ℵ0-表現可能対象はちょうど有限表示加群と同値
である．さらにMod(R)は局所 ℵ0-表示可能圏である．実際，Mod(R)は余完備で，集合
{R}が保守的集合をなす．

(5) より広く，Grothendieckアーベル圏は局所表示可能圏である．
(6) 位相空間の圏 Topにおいて，λ-表現可能対象はちょうど濃度が λ未満の離散空間と同値
である．特に Topは局所表現可能圏でも到達可能圏でもない．

(7) 体のなす圏 Fldは ℵ0-到達可能圏であるが，局所 ℵ0-表示可能圏ではない．実際，Fldは
余完備ではない．

(8) 小圏 A上の関手圏 Fun(A, Set)において，表現可能関手 HomA(−, A)は ℵ0-表現可能対
象である．さらに Fun(A, Set)は局所 ℵ0-表示可能圏である．実際，Fun(A, Set)は余完
備で，表現可能関手のなす集合 {HomA(−, A)}A∈A が保守的集合をなす．

(9) より広く，Grothendieckトポスは局所表示可能圏である．
(10) 圏のなす圏 Cat は局所 ℵ0-表示可能圏である．実際，Cat は余完備で，walking arrow

category 2 = {0 < 1}だけからなる集合 {2}が ℵ0-表現可能な対象からなる保守的集合
となる．

(11) より一般にモノイダル閉圏 V に対して，V0 が局所 λ-表示可能圏ならば，それ上の豊穣圏
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のなす圏 V-Catはまた局所 λ-表示可能圏である．([KL01, Theorem 4.5])

(12) 実 Banach空間と作用素ノルムが 1以下の（有界）線形作用素 (linear contraction)のな
す圏を Ban1 とするとき，Ban1 は局所 ℵ1-表示可能圏である．実際，Ban1 は余完備で，
実数の空間 Rだけからなる集合 {R}が ℵ1-表現可能な対象からなる保守的集合となる．

(13) 実 Hilbert空間のなす充満部分圏 Hilb ⊆ Ban1 は ℵ1-到達可能圏であるが，局所 ℵ1-表示
可能圏ではない．実際，Hilbは自己双対的である．

(14) 集合と単射写像のなす圏 Setinj は局所 ℵ0-表示可能圏ではないが，ℵ0-到達可能圏である．
(15) より一般に，局所表示可能圏 K に対して，モノ射のなす部分圏 Kmono ⊆ K は到達可能

圏である．
(16) 集合と partial bijectionのなす圏は ℵ0-到達可能圏であるが，局所 ℵ0-表示可能圏ではな

い．実際，この圏自己双対的である．ここで partial bijectionとは，関係 R ⊆ A×B で
あって，ある部分集合 A′ ×B′ 上で全単射写像になっているもののことをいう．

2.3 表現定理

定義 2.22. λ を正則基数とする．小圏 A 上の前層 F : Aop → Set が λ-平坦 (λ-flat) であると
は，要素の圏 ∫

F が λ-フィルター圏となるときをいう．

λ-平坦な前層のなす充満部分圏を λ-Flat(A) ⊆ Âとする．

注意 2.23. λ = ℵ0 のとき，ℵ0-平坦前層を単に平坦前層 (flat presheaf )と呼ぶ．

注意 2.24. 米田埋め込み y : A → Âの稠密性定理より，任意の前層 F ∈ Âに対して

F ∼= colim(
∫
F → A y−→ Â)

が成り立つ．F が平坦であるとは，この余極限が λ-フィルター余極限となるということである．

例 2.25. 表現可能関手HomA(−, A) : Aop → Setは平坦である．というのも ∫
HomA(−, A) ∼=

A/Aは終対象を持つので，任意の正則基数 λについて明らかに λ-フィルター圏である．

表現可能関手 Hom(−, A)の米田埋め込み y : A → Âに沿った左 Kan拡張は Lany Hom(−, A)

は，Aでの代入関手 EvA になることに注意する．

命題 2.26. λを正則基数とする．前層 F : Aop → Setに対して，次は同値：

(i) F は λ-平坦である．
(ii) F は表現可能関手の λ-フィルター余極限で表せる．
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(iii) 左 Kan拡張 Lany F : Fun(A, Set)→ Setは λ-小極限を保つ．
(iv) 左 Kan拡張 Lany F : Fun(A, Set)→ Setは表現可能関手から成る λ-小極限を保つ．

Proof. (i) ⇒ (ii): 注意 2.24より明らか．
(ii) ⇒ (iii): F が表現可能関手から成る λ-フィルター図式 {Hom(−, Aj)}j∈J による余極限

F ∼= colimj Hom(−, Aj)で表せるとする．左 Kan拡張と取る関手 Lany は余極限を保つから，

Lany F ∼= colimj Lany Hom(−, Aj) ∼= colimj EvAj

となる．よって任意の Âにおける λ-小図式 {Di}i∈I に対して，Setでの λ-フィルター余極限が λ-

小極限と交換することを用いると，

Lany F (limi Di) ∼= colimj EvAj
(limi Di)

∼= colimj limi Di(Aj)

∼= limi colimj Di(Aj)

∼= limi colimj EvAj
(Di)

∼= limi Lany F (Di)

となる．よって Lany F は λ-小極限を保つ．
(iii) ⇒ (iv): 明らか．
(iv) ⇒ (i): λ-小な部分圏 I ⊆ ∫

F に対して，I 上の余錐が存在することを示せばよい．包含関
手を ι : I ↪→

∫
F とし，D := (I ι−→

∫
F

Π−→ A)とおく．関手 Iop Dop

−−→ Aop y−→ Fun(A, Set)の極限
を H = lim(y ◦Dop) ∈ Fun(A, Set)と置くとき，Kan拡張 Lany F : Fun(A, Set)→ Setが表現可
能関手の λ-小極限を保つことから

Lany F (H) = Lany F (lim(y ◦Dop)) ∼= lim(Lany F ◦ y ◦Dop)

∼= lim(F ◦Dop) = Cone(1, F ◦Dop)

となる．一方，Lany F は各点 Kan拡張だから

Lany F (H) ∼= colim(Elts(H)op → Aop F−→ Set)

となる．よって

Cone(1, F ◦Dop) ∼= colim(Elts(H)op → Aop F−→ Set) = colim(A,f)∈Elts(H) F (A)

となる．
さて (

∫
F )op = Elts(F ) ∼= {∗} ↓ F であるから，関手 ι : I ↪→

∫
F に対応して自然変換

Aop Set

Iop {∗}

F

Dop 1
α
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つまり錐 α ∈ Cone(1, F ◦Dop)が得られる．集合の全射∐
(A,f)∈Elts(H)

FA ↠ colim(Elts(H)op → Aop F−→ Set) ∼= Cone(1, F ◦Dop)

があるから，ある対象 A ∈ Aと元 f ∈ HAおよび上の全射で送ると αになるような χ ∈ F (A)が
存在する．ここで

H(A) ∼= EvA(H) = EvA(lim(y ◦Dop)) ∼= lim(EvA ◦y ◦Dop)

∼= lim(Hom(A,−) ◦Dop) ∼= Cone(A,Dop)

であることに注意すると，f ∈ H(A)は錐 f : ∆A ⇒ Dop に対応し，これは自然変換の等式

Aop Set

Iop {∗}

F

Dop

∆A

f 1χ =

Aop Set

Iop {∗}

F

Dop

1

1
α

をみたす．コンマ圏 (
∫
F )op = {∗} ↓ F の二次元的普遍性により，ある自然変換 β : ∆(A,χ) ⇒ ιop

が存在して

Iop (
∫
F )op Aop

ιop

∆(A,χ)

β
Πop

= Iop Aop

Dop

∆A

f

となる．特に自然変換 βop : ι⇒ ∆(A,χ) : I →
∫
F が存在し，これは I 上の余錐となる．

命題 2.27 (表現定理 I). λ-到達可能圏 Kに対して，圏同値 K ' λ-Flat(Presλ(K))が成り立つ．

Proof. A = Presλ(K)とおくとAは（本質的）小圏である．命題 2.14よりA ⊆ Kは稠密で，関手

R := Lanι y : K → Â, K 7→ HomK(−,K)|A

は充満忠実である．さらに ∫
R(K) ∼= A ↓ K は λ-フィルター圏であるから，R(K)は λ-平坦であ

る．よって Rは充満忠実関手 R : K → λ-Flat(A)を誘導する．あとはこれが本質的全射であるこ
とを示せばよい．
任意の λ-平坦前層 F ∈ λ-Flat(A)を取るとき，

F ∼= colim(
∫
F → A y−→ Â)

となる．ここで
K0 := colim(

∫
F → A ι−→ K)

と置くとき ∫
F が λ-フィルター圏であることからこの余極限は存在し，Rが λ-フィルター余極限

を保つことから

R(K0) ∼= colim(
∫
F → A ι−→ K R−→ Â)

∼= colim(
∫
F → A y−→ Â)

∼= F
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となる．よって Rは圏同値 K ' λ-Flat(A)を与える．

ある意味で，この命題の逆も成り立つ．

命題 2.28. λを正則基数とする．小圏 Aに対して，λ-平坦前層のなす圏 λ-Flat(A)は λ-到達可
能圏である．

Proof. 例 2.25より表現可能前層は λ-平坦であるから，米田埋め込みによって部分圏 A ⊆ Âとみ
なしたとき，包含 A ⊆ λ-Flat(A) ⊆ Âが成り立つ．
まず λ-Flat(A)が Âの λ-フィルター余極限で閉じることを示そう．λ-平坦前層からなる λ-フィ
ルター図式 {Fj}j∈J に対して，Âにおける余極限を F := colimj Fj とする．F が λ-平坦であるこ
とを示すには，命題 2.26より，Kan拡張 Lany F が λ-小極限を保存することを示せばよい．Kan

拡張を取る関手 Lany は余極限を保つことから

Lany F ∼= colimj Lany Fj

となる．よって任意の Âにおける λ-小図式 {Pi}i∈I に対して，Setでの λ-フィルター余極限が λ-

小極限と交換することを用いると，

Lany F (lim
i

Pi) ∼= colimj Lany Fj(lim
i

Pi)

∼= colimj lim
i

Lany Fj(Pi)

∼= lim
i

colimj Lany Fj(Pi)

∼= lim
i

Lany F (Pi)

となる．よって F も λ-平坦である．
このことから λ-Flat(A)は λ-フィルター余極限を持ち，さらに各A ∈ Aに対して，Hom(−, A) ∈

λ(A)-Flatが λ-表示可能であることがわかる．定義もしくは命題 2.26より，すべての λ-平坦前層
は表現可能前層の λ-フィルター余極限で表せるから，λ-Flat(A)は λ-到達可能である．

系 2.29. λ を正則基数とする．小圏 A が Cauchy 完備のとき，圏同値 Presλ(λ-Flat(A)) ' A
が成り立つ．

Proof. 命題 2.28の証明より，λ-到達可能圏 λ-Flat(A)の定義に出てくる λ-表示可能対象から成る
集合として，表現可能前層全体 A が取れる．命題 2.12 よりすべての K ∈ Presλ(λ-Flat(A)) は，
表現可能前層のレトラクトとなるが，Aが Cauchy完備であるから K は表現可能になる．よって
包含 A ↪→ Presλ(λ-Flat(A))は圏同値になる．

定理 2.30 (表現定理 II). λを正則基数とする．圏 Kに対し，次は同値である：

(i) Kは λ-到達可能圏である．
(ii) ある小圏 Aが存在して，圏同値 K ' λ-Flat(A)が成り立つ．
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Proof. 命題 2.27と命題 2.28より従う．

Kが局所 λ-表示可能であるとき，注意 2.5で見たように Presλ(K)は λ-小余完備である．

補題 2.31. λを正則基数とする．小圏 Aが λ-小余完備であるとき，前層 F : Aop → Setが λ-

平坦であることは λ-連続であることと同値である．

Proof. Aが λ-小余完備であるとき，米田埋め込み y : Aop → Fun(A, Set)のもとで Aop は λ-小極
限で閉じる．このことから，命題 2.26の条件 (iv)と F : Aop → Setが λ-連続であることは同値と
なる．

小圏 C に対して，λ-連続な関手 C → Set のなす充満部分圏を λ-Cts(C, Set) ⊆ Fun(C, Set) と
する．

命題 2.32. 局所 λ-表示可能圏 Kに対して，圏同値 K ' λ-Cts(Presλ(K)op, Set)が成り立つ．

Proof. 補題 2.31と命題 2.27より従う．

λ-到達可能圏の場合と同様にある意味でこの逆も成り立つが，それを証明するには到達可能関手
の性質について調べる必要がある．

2.4 到達可能圏の基数の取り代え
正則基数 λ < µに対して，局所 λ-表示可能ならば局所 µ-表示可能である．しかし，一般に λ-到
達可能でも µ-到達可能とはならない場合がある．これが成り立つような正則基数の条件に付いて
考察しよう．
まず正則基数 λに対して，圏 DPosλ を

• 対象は，λ-有向集合とする
• 射は，順序を保つ単射とする

であるようなものと定める．

補題 2.33. 集合 X に対して，濃度が λ 未満であるような部分集合 X ′ ⊆ X 全体のなす集合
を Pλ(X)とし，包含による順序によって順序集合とみなす．このとき Pλ(X)は λ-有向集合で
ある．

Proof. Pλ(X) の部分集合 {Yi}i∈I で |I| < λ となるものを取る．このとき Y ′ =
⋃

i∈I Yi とおく
と，λが正則基数であることから |Y ′| < λとなる．よって Y ′ ∈ Pλ(X)となり，これが {Yi}i∈I の
上界となる．よって Pλ(X)は λ-有向集合である．
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補題 2.34. 圏 DPosλ における λ-有向図式 D : J → DPosλ に対して，その余極限 colimD は，
和集合 ⋃

i∈J Di に以下のような順序を入れたものである：

• 元 x ∈ Di，x′ ∈ Di′ に対して，ある j ∈ J で j ≥ i, j ≥ i′ となる元が存在して Dj にお
いて x ≤ x′ が成り立つとき，x ≤ x′ であると定義する．

特に DPosλ は λ-有向余極限を持つ．

Proof. 集合 ⋃
i∈J Di が順序集合になることは明らか．部分集合 {xk}k∈I ⊆

⋃
i Di で |I| < λとな

るものをとる．各 k ∈ I について xk ∈ Dik となる ik ∈ J をとる．J は λ-有向集合だから，部分集
合 {ik}k ⊆ J に対してその上界 i ∈ J が存在する．このときすべての k ∈ I について xk ∈ Di で
ある見なしてよい．Di も λ-有向集合であるから，部分集合 {xk}k ⊆ Di に対してその上界 x ∈ Di

が存在する．このとき x は，⋃
i Di において {xk}k の上界となるから，

⋃
i Di は λ-有向集合と

なる．
自然な写像Di →

⋃
i Di は明らかに順序を保つ単射であり，これらが余極限の普遍性をみたすこ

とが簡単に確認できる．よって colimD =
⋃

i Di となる．

補題 2.35. µを別な正則基数とする．対象 A ∈ DPosλ に対して，Aが µ-表示可能である必要
十分条件は |A| < µであることである．

Proof. (⇒): 順序集合 Aに最大限>を追加して，A∗ = At{>}を考える．明らかに A∗ ∈ DPosλ

である．等式
A∗ =

⋃
B∈Pµ(A)

(B t {>})

が成り立つことに注意する．補題 2.34より，右辺は µ-有向図式D : Pµ(A)→ DPosλ, B 7→ Bt{>}
の余極限となる．Aが µ-表示可能であるから，ある B ∈ Pµ(A)と

A B t {>}

A∗

を可換にする DPosλ の射 A ↪→ B t {>}が存在する．特に |A| < |B t {>}| < µとなる．
(⇐): DPosλ における µ-有向図式 D : J → DPosλ を µ-有向図式とし，その余極限余錐を
{si : Di → C}i とする．DPosλ における任意の射 f : A→ C に対して，f は単射だから A ⊆ C =⋃

i∈J Di とみなせる．各 a ∈ Aに対して，a ∈ Dia となる ia ∈ J をとる．ここで |A| < µだから，
J が µ-有向集合であることにより，部分集合 {ia}a ⊆ J についてその上界 j ∈ J が存在する．こ
のとき A ⊆ Dj とみなせ，f は

A Dj

C

f
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と分解する．この分解が本質的に一意であることも明らかである．よって A は µ-表示可能であ
る．

命題 2.36. 正則基数 λに対して，圏 DPosλ は λ-到達可能圏である．

Proof. 補題 2.34 より DPosλ は λ-有向余極限を持ち，よって λ-フィルター余極限も持つ．補
題 2.35より，Presλ(DPosλ)は濃度が λ未満の λ-有向集合全体となり，特に本質的小である．あ
とは任意の A ∈ DPosλ が λ-表示可能対象の λ-有向余極限で表せることを示せばよい．
補題 2.33の λ-有向集合 Pλ(A)を考える．各 B ∈ Pλ(A)に対して，|B| < λだから，Aが λ-有
向集合であることにより B ⊆ Aの上界 >B ∈ Aが存在する．このとき等式

A =
⋃

B∈Pλ(A)

(B ∪ {>B})

を考えると，補題 2.34より右辺は λ-有向余極限である．各 B について，|B ∪ {>B}| < λだから
補題 2.35より B ∪ {>B}は λ-表示可能である．したがって任意の A ∈ DPosλ が λ-表示可能対象
の λ-有向余極限で表せることがわかった．

定義 2.37. 基数 β, λに対して，β<λ :=
∑

α<λ β
α とおく．

注意 2.38. 以下が成り立つ．

• |X| > λとなる集合 X に対して |Pλ(X)| = |X|<λ となる．
• λが正則基数のとき，基数 β ≥ λに対して (β<λ)<λ = β<λ が成り立つ．

定理 2.39. 正則基数 λ < µに対し，次は同値である：

(i) λ-到達可能圏は µ-到達可能である．
(ii) 圏 DPosλ は µ-到達可能である．
(iii) 濃度が µ未満の任意の集合 X に対して，Pλ(X)は濃度が µ未満の cofinalな部分集合を

持つ．
(iv) 任意の λ-有向集合 I において，濃度が µ未満の部分集合は濃度が µ未満の λ-有向部分集

合に含まれる．
(v) 任意の λ-有向集合 I において，濃度が µ未満の λ-有向部分集合全体のなす集合 Ĩ は包含
順序に関して µ-有向集合になる．

Proof. (i) ⇒ (ii): 命題 2.36より明らか．
(ii) ⇒ (iii): 濃度が µ 未満の集合 X をとる．補題 2.33 より Pλ(X) ∈ DPosλ である．いま

DPosλ は µ-到達可能であるから，µ-表示可能対象からなる µ-有向図式 D : J → DPosλ が存在し
て，Pλ(X) = colimD =

⋃
i∈J Di となる．各 x ∈ X に対して，{x} ∈ Pλ(X)だから，{x} ∈ Dix
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となる ix ∈ J が存在する．|X| < µ であるから，J が µ-有向集合であることにより，部分集合
{ix}x ⊆ J についてその上界 j ∈ J が存在する．このとき任意の x ∈ X について x ∈ Dj として
よい．この Dj ⊆ Pλ(X)が求める集合であることを確認しよう．
Dj は µ-表示可能であるから |Dj | < µ である．任意の Y ∈ Pλ(X) に対して，Y ⊆ X である
から

{{y} | y ∈ Y } ⊆ Dj

となる．|Y | < λ であるから，Dj が λ-有向集合であることにより，この集合は上界 Z ∈ Dj ⊆
Pλ(X)を持つ．これは各 y ∈ Y について {y} ⊆ Z が成り立つということであり，よって Y ⊆ Z

となる．したがって Dj ⊆ Pλ(X)は cofinalな部分集合である．
(iii) ⇒ (iv): λ-有向集合 I の部分集合X ⊆ I で |X| < µとなるものをとる．まず Pµ(I)におけ
る上昇列 (Xα)α<λ を以下のように超限帰納的に構成する．

• α = 0のとき，X0 := X とする．|X| < µであったから確かに X ∈ Pµ(I)である．
• αが極限順序数のとき，Xα :=

⋃
ξ<α Xξとおく．仮定から |Xξ| < µであり，かつ α < λ < µ

だから，µが正則基数であることより |Xα| < µとなり，確かに Xα ∈ Pµ(I)である．
• 後続順序数 α + 1 について，Xα まで得られているとする．|Xα| < µ だから，仮定より
Pλ(Xα) は濃度が µ 未満の cofinal な部分集合 S ⊆ Pλ(Xα) を持つ．各 Z ∈ S に対して，
|Z| < λかつ Z ⊆ Xα ⊆ I だから，I が λ-有向集合であることにより Z ⊆ I の上界 >Z が
存在する．このとき

Xα+1 :=
⋃
Z∈S

(Z ∪ {>Z})

と定める．|S| < µ かつ |Z ∪ {>Z}| < λ < µ であるから，µ が正則基数であることよ
り |Xα+1| < µ となり，確かに Xα+1 ∈ Pµ(I) である．また，任意の x ∈ Xα について
{x} ∈ Pλ(Xα)を考えると，S ⊆ Pλ(Xα)が cofinalであるから，{x} ⊆ Zx となる Zx ∈ S

が存在する．このことから Xα ⊆ Xα+1 がわかる．

こうして得られた上昇列 (Xα)α<λ に対し

X∗ :=
⋃
α<λ

Xλ ⊆ I

とおくとき，これが X を含む濃度が µ 未満の λ-有向集合となることを示そう．X0 = X だから
X ⊆ X∗ は明らか．λ < µかつ |Xα| < µであるから，µが正則基数であることにより |X∗| < µ

となる．さて，濃度が λ未満の部分集合 Y ⊆ X∗ を任意に取る．各 y ∈ Y について y ∈ Xαy
と

なる αy < λを取り，α = max{αy | y ∈ Y }とすると，λが正則基数であることにより α < λと
なる．このとき Y ⊆ Xα であり，Y ∈ Pλ(Xα)となる．ここで Xα+1 の構成を思い出すと，構成
の途中でとった cofinal集合 S ⊆ Pλ(Xα)について，Y ⊆ Z となる Z ∈ S が存在する．Z の上界
>Z ∈ Xα+1 ⊆ X∗ を考えれば，これは Y の上界でもある．したがって X∗ は λ-有向集合である．
(iv) ⇒ (v): 濃度が µ 未満の λ-有向部分集合全体のなす集合 Ĩ が µ-有向集合であることを示
す．部分集合 {Xi}i∈I ⊆ Ĩ で |I| < µであるものをとる．その和集合を Y =

⋃
i∈I Yi ⊆ I とおく
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と，µが正則基数であることより |Y | < µである．よって仮定より，濃度 µ未満の λ-有向部分集
合 Y ∗ ⊆ I であって Y ⊆ Y ∗ となるものが存在する．このとき Y ∗ ∈ Ĩ であり，これは {Xi}i の上
界となる．よって Ĩ は µ-有向集合である．
(v) ⇒ (i): K を λ-到達可能圏とする．µ-有向集合は λ-有向であるから K は µ-有向余極限を持
つ．K において λ-表示可能対象の µ-小 λ-有向余極限で表せる対象全体のなす充満部分圏を Aと
する．λ-表示可能対象のなす充満部分圏 PresλK は本質的小であったから，A も本質的小である
（同型類の代表元の集合に取り代えることにより Aは小圏であるとしてよい）．また命題 2.4より
Aの対象は µ-表示可能である．あとは任意の K ∈ Kが Aの対象の µ-有向余極限で表せることを
示せばよい．
対象 K ∈ K に対して，K が λ-到達可能であるから，λ-表示可能対象からなる λ-有向図式

D : I → K が存在して K = colimD となる．ここで，λ-有向集合 I の濃度が µ 未満の λ-有向
部分集合全体のなす集合を Ĩ とすると，仮定より Ĩ は µ-有向集合となる．各 X ∈ Ĩ に対して，
G(X) := colim(D|X) = colim(X ↪→ I

D−→ K)とおくと，G(X) ∈ A である．さらにこの対応は
関手

G : Ĩ → K

を定める．普遍性により誘導される射 G(X)→ K は G上の余錐 (GX → K)X∈Ĩ を定める．この
ときこの余錐が余極限を与えることを示そう．別な余錐 (GX → L)X∈Ĩ を取るとき，各 i ∈ I に
ついて {i} ∈ Ĩ であるから，この余錐を I に制限して，D上の余錐 (G({i}) = Di → L)i∈I が得ら
れる．K = colimD であるから，一意的な射 K → Lが誘導される．これが G上の余錐の一意的
な射になる．したがって K = colimX∈Ĩ GX となり，K は Aの対象の µ-有向余極限で表せるこ
とがわかった．

定義 2.40. 正則基数 λ < µが定理 2.39の条件をみたすとき，λは µより激しく小さい (sharply

smaller)といい，記号 λ◁ µで表す．

注意 2.41. 正則基数の関係 ◁について，次が成り立つ．

(1) 関係 ◁は推移的である．
(2) 非可算正則基数 λに対して，ℵ0 ◁ λである．
(3) 正則基数 λとその後続基数 λ+ について，λ◁ λ+ である．
(4) 正則基数 λ < µについて，任意の α < λと任意の β < µに対し βα < µが成り立つなら
ば，λ◁ µである．

(5) 正則基数 λ < µに対して，λ◁ (2µ)+ である．
(6) 正則基数 µに対して，µ◁ (µ,µ)+ である．
(7) 任意に基数 σ を取る．任意の正則基数からなる集合 Lに対して，正則基数 µ ≥ σ を，す
べての λ ∈ Lで λ◁ µが成り立つようにとれる．
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Proof. (1) 定理 2.39 (i)より明らか．
(2) 定理 2.39 (iii)よりわかる．
(3) 定理 2.39 (iii) の条件を確認する．濃度が λ+ 未満の任意の集合 X に対し，X の濃度

λ0 = |X| < λ+ によって X を整列させて X = {xi}i≤λ0 と表しておく．このとき {{xi}i<α}α≤λ0

は Pλ(X)の cofinalな部分集合であることが示せる．
(4) 定理 2.39 (iii) の条件を確認する．濃度が µ 未満の任意の集合 X に対し，その濃度を

β = |X| < µとする．µが正則基数であることから

|Pλ(X)| =
∑
α<λ

βα < µ

となる．よって Pλ(X)の cofinalな部分集合として Pλ(X)自身が取れる．
(5) 基数 α < λと β < (2µ)+ に対して，βα ≤ 2µ·α = 2µ < (2µ)+ となるから，(4)より従う．
(6)基数 α < µと β < (µ<µ)+ に対して，βα ≤ (µ<µ)α = µ<µ < (µ<µ)+ となるから，(4)よ
り従う．
(7) λ′ = max{σ, λ | λ ∈ L}とし µ = (2λ

′
)+ とおけば，(3)よりわかる．

系 2.42. 基数 σを任意に取る．任意の到達可能圏の集合 {Ki}i∈I に対して，ある正則基数 λ ≥ σ

が存在して，すべての i ∈ I で Ki は λ-到達可能となる．

Proof. 定理 2.39と注意 2.41 (7)より従う．

系 2.43. λ-到達可能圏 K の対象 K と正則基数 µ で λ ◁ µ であるものに対して，次は同値で
ある：

(i) K は µ-表示可能である．
(ii) K は λ-表示可能対象の µ-小 λ-有向余極限のレトラクトである．

Proof. (i) ⇐ (ii)は明らか．
(i) ⇒ (ii): 定理 2.39の ((v) ⇒ (i))の証明からわかる．

2.5 到達可能関手と随伴関手定理

定義 2.44. λを正則基数とする．関手 F : K → Lが λ-到達可能 (λ-accessible)であるとは，K
と Lが λ-到達可能圏であり，かつ F が λ-フィルター余極限を保つときをいう．
関手 F : K → Lが単に到達可能 (accessible)であるとは，ある正則基数 λについて λ-到達可
能であるときをいう．
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注意 2.45. 正則基数 λ, µが λ◁ µをみたすとき，λ-到達可能関手は µ-到達可能である．特に，
到達可能関手の合成はまた到達可能関手である．

命題 2.46. 到達可能圏 K に対して，すべての表現可能関手 Hom(K,−) : K → Setは到達可能
関手である．

Proof. 命題 2.11より K の対象はすべて表示可能対象である．K が λ-到達可能で，K が λ′-表示
可能であるとする．このとき正則基数 µを λ ◁ µかつ λ′ < µとなるように取れば，K は µ-到達
可能圏で Hom(K,−) は µ-フィルター余極限を保つ．よって Hom(K,−) は µ-到達可能関手とな
る．

命題 2.47. 到達可能圏 Kからの関手 F : K → Setに対して，次は同値：

(i) F は到達可能関手である．
(ii) F は表現可能関手の余極限で表せる．

Proof. (i)⇐ (ii): 表現可能関手からなる図式 {Hom(Ai,−)}i∈I を用いて F = colimi Hom(Ai,−)
と表せるとする．I が小圏であることに注意すると，正則基数 λを

• Kは λ-到達可能である
• すべての i ∈ I について Ai は λ-表現可能である

をみたすように取れる．このとき任意の λ-フィルター図式 {Dj}j∈J に対して

F (colimj Dj) ∼= colimi Hom(Ai, colimj Dj)

∼= colimi colimj Hom(Ai, Dj)

∼= colimj colimi Hom(Ai, Dj)

∼= colimj F (Dj)

となる．よって F は λ-フィルター余極限を保ち，λ-到達可能関手となる．
(i) ⇒ (ii): F が λ-到達可能であるとする．このときA := PresλKは（本質的）小圏であるから，

F |A ∈ Âは A上の表現可能関手の余極限で表せる．つまり Aにおける図式 {Ai}i∈I が存在して，

F |A ∼= colimi HomA(Ai,−) = colimi HomK(Ai,−)|A

となる．関手 F，colimi HomK(Ai,−)はともに λ-フィルター余極限を保ち，K の対象は Aの対
象の λ-フィルター余極限で表せることから，上の同型から F ∼= colimi HomK(Ai,−)となること
がわかる．

定理 2.48 (一様化定理). 基数 σ を任意に取る．任意の到達可能関手の集合 {Fi : Ki → Li}i∈I

に対して，ある正則基数 λ > σ が存在して，すべての i ∈ I で Fi は λ-表示可能対象を保つ λ-到
達可能関手となる．
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Proof. 各 i ∈ I について Fi は κi-到達可能関手であるとする．系 2.42より，σ とどの κi よりも
大きい正則基数 κが存在して，Ki,Li は κ-到達可能になる．
次に各 i ∈ I と A ∈ PresκKi に対して，命題 2.11より Fi(A) ∈ Li が µiA-表示可能となるよう
な正則基数 µiA が取れる．κとどの µiA よりも大きい正則基数 λ′ を取り，λ := (2λ

′
)+ とおく．注

意 2.41 (5)より κ◁ λである．このように基数を取っていったとき，次がいえる．

(a) 各 i ∈ I について，Ki,Li は λ-到達可能である．
(b) 各 i ∈ I について，κi < κ < λであるから，Fi は κ-フィルター余極限および λ-フィルター
余極限を保つ．

(c) 各 i ∈ I と A ∈ PresκKi について，λ > µiA より Fi(A) ∈ Li は λ-表示可能である．

主張 (a),(b)より，各 Fi は λ-到達可能関手である．また λ-表示対象 A ∈ Ki に対して，系 2.43

により Aは κ-表示対象の λ-小 κ-有向余極限のレトラクトとなる．よって主張 (b),(c)より Fi(A)

は λ-表示対象の λ-小 κ-有向余極限のレトラクトとなる．したがって命題 2.4（とその系）より
Fi(A)が λ-表示可能であることがわかる．

注意 2.49. λ-到達可能関手 F が λ-表示可能対象を保つとする．このとき λ◁µとなる正則基数
µについて，F は µ-表示可能対象も保つ（定理 2.48の証明の後半の議論と同様にしてわかる）．

系 2.50. 到達可能圏 K,Lの間の関手 F : K → Lに対して，次は同値：

(i) F は到達可能である．
(ii) 任意の対象 L ∈ Lに対して，HomL(L,F (−)) : K → Setは到達可能である．

Proof. (i) ⇒ (ii): 命題 2.46より表現可能関手は到達可能であり，到達可能関手の合成はまた到達
可能であることから従う．
(ii) ⇒ (i): K,L が λ-到達可能となるような正則基数 λ を取る．定理 2.48 を用いると，λ ◁ µ

となる正則基数 µを，すべての L ∈ PresλLについて Hom(L,F (−))が µ-到達可能となるように
取れる．いま Lが λ-到達可能圏であるから，PresλL ⊆ L は稠密な部分圏であり，よって関手の
族 {Hom(L,−)}L∈PresλL は共同で λ-フィルター余極限（したがって µ-フィルター余極限）を反射
する．このことから F が µ-フィルター余極限を保つことがわかる．λ◁ µであったらから K,Lは
µ-到達可能となり，よって F は µ-到達可能関手である．

命題 2.51. 到達可能圏の間の左随伴および右随伴は到達可能である．

Proof. K,Lを λ-到達可能圏とし，F : K → Lを左随伴，G : L → Kをその右随伴とする．
左随伴 F はすべての余極限を保つから，明らかに F は λ-到達可能である．
右随伴 Gについて考える．定理 2.48より，必要なら正則基数 λを取り代えることで F は λ-表
示可能対象を保つとしてよい．このとき Gが λ-フィルター余極限を保つことを示そう．任意の λ-
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フィルター図式 D : J → Lに対して，余極限の普遍性により誘導される射を
u : colimj G(Dj)→ G(colimj Dj)

とする．部分圏 PresλL ⊆ L が稠密であることから，u が同型であることを示すには任意の
B ∈ PresλLについて

Hom(B, colimj GDj)→ Hom(B,G(colimj Dj))

が同型であることを示せばよい．左随伴 F が λ-表示可能対象を保つことから
Hom(B, colimj GDj) ∼= colimj Hom(B,GDj)

∼= colimj Hom(FB,Dj)

∼= Hom(FB, colimj Dj)

∼= Hom(B,G(colimj Dj))

となる．よって uは同型である．

命題 2.47が象徴しているように，到達可能関手は関手の中でも「大きくない」関手のクラスで
ある．この性質は次のような応用をもたらしてくれる．

定義 2.52. 関手 F : K → Lが次の条件をみたすとき，F は解集合条件 (solution-set condition)

をみたすという．

(解集合条件) 対象 L ∈ Lを任意に取る．このとき Lの射の集合 {gi : L→ F (Ki)}i∈I が存在し
て，各射 f : L→ F (K)について

L F (K)

F (Ki)

f

gi F (h)

を可換にする射 gi と h : Ki → K が存在する．

解集合条件に出てくる射の集合 {gi}i を Lの解集合 (solution set)と呼ぶ．

命題 2.53. 到達可能圏の間の到達可能関手 F : K → Lは解集合条件をみたす．

Proof. 対象 L ∈ Lを任意に取るとき，Lが到達可能圏であることから Lは表示可能対象である．
このとき十分大きな正則基数 λを

• K,Lは λ-到達可能圏で，F は λ-到達可能関手である
• Lは λ-表示可能対象である

をみたすように取れる．このとき射の集合
Φ =

⊔
A∈PresλK

HomL(L,K(A))
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が L の解集合となることを示そう．任意の対象 K ∈ K と L の射 f : L → F (K) を考える．
K は λ-到達可能圏だから，ある λ-表示可能対象からなる λ-フィルター図式 {Dj}j∈J 上の余
極限余錐 (sj : Dj → colimj Dj = K)j が存在する．F は λ-フィルター余極限を保つから，
F (K) ∼= colimj F (Dj)となる．Lは λ-表示可能であるから，ある j ∈ J と

L F (Dj)

F (K)

f
F (sj)

を可換にする射 L→ F (Dj)が存在する．これは Φが Lの解集合であることを意味する．

したがって到達可能関手は次の一般随伴関手定理の適用対象となる．

定理 2.54 (一般随伴関手定理). Kを余完備な圏とする．このとき関手 F : K → Lに対して次は
同値：

(i) F は左随伴を持つ．
(ii) F は連続かつ解集合条件をみたす．

Proof. [Mac98, Ch.V, Thm 2], [alg-db, 定理 18]

随伴関手定理によりただちに次がわかる．

定理 2.55. 局所表示可能圏 K,Lの間の関手 F : K → Lに対して，次は同値：

(i) F は左随伴を持つ．
(ii) F は連続かつ到達可能である．

Proof. (i) ⇒ (ii): 命題 2.51より明らか．(ii) ⇒ (i): 命題 2.53と定理 2.54より従う．

右随伴の存在に関しては，比較的簡単に成立する．

命題 2.56. 局所表示可能圏 Kからの関手 F : K → Lに対して，次は同値：

(i) F は右随伴を持つ．
(ii) F は余連続である．

Proof. (i) ⇒ (ii): 明らか．(ii) ⇒ (i): 系 2.13 および命題 2.14 より K は小さい稠密部分圏を持
つ．よって [alg-db, 定理 23]より従う．
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定理 2.57 (表現定理 III). λを正則基数とする．圏 Kに対して，次は同値である：

(i) Kは局所 λ-表示可能圏，すなわち λ-到達可能かつ余完備である．
(ii) Kは λ-到達可能かつ λ-小余完備である．
(iii) ある λ-小完備な小圏 C が存在して，圏同値 K ' λ-Cts(C, Set)が成り立つ．
(iv) Kは λ-到達可能かつ完備である．
(v) ある小圏 Aが存在して，Kは λ-フィルター余極限で閉じるような Âの反映的充満部分圏
である．

Proof. (i) ⇒ (ii): 明らか．
(ii) ⇒ (iii): 命題 2.32と同様に，C = Presλ(K)op とすればよい．
(iii) ⇒ (iv): 命題 2.31 より λ-Cts(C, Set) = λ-Flat(Cop) であり，命題 2.28 よりこれは λ-到
達可能である．また極限と極限は交換することから，λ-Cts(C, Set) ⊆ Fun(C, Set) は極限で閉じ，
λ-Cts(C, Set)は完備となる．
(iv) ⇒ (v): A = PresλKとし，包含関手を ι : A ↪→ Kとする．命題 2.14より Lanι y : K → Â
は充満忠実であり，さらに λ-フィルター余極限を保つから λ-到達可能関手である．命題 1.13より
Lanι y は連続でもある．よって命題 2.53と定理 2.54より Lanι y は左随伴を持ち，K は Âの λ-

フィルター余極限で閉じるような反映的充満部分圏となる．
(v) ⇒ (i): 普遍随伴を用いれば明らか．
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A 付録
A.1 正則基数

定義 A.1. 無限基数*6λが正則 (regular)であるとは，集合 I で添え字づけられた集合族 {Ai}i∈I

に対して，|I| < λかつすべての i ∈ I で |Ai| < λならば |⋃i∈I Ai| < λとなるときをいう．

最小の無限基数 ℵ0 は正則である．また無限基数 λに対して，その後続基数 λ+ は常に正則基数
である．

A.2 フィルター圏の性質
λを正則基数とする．圏 J が λ-フィルター (λ-filtered)であるとは，三条件

• J は空でない
• J の対象から成る集合 {il}l∈L で濃度が λ未満のものに対して，ある対象 k ∈ J と各 l ∈ L

について射 il → k が存在する
• J の任意の対象 i, j と，射の集合 {ul : i→ j}l∈L で濃度が λ未満のものに対して，ある射
v : j → k が存在して，すべての l, l′ ∈ Lについて v ◦ ul = v ◦ ul′ が成り立つ

をみたすときをいう（定義 1.2の再掲）．特に λ = ℵ0 のとき，単にフィルター圏 (filtered categry)

という．定義から λ-フィルター圏はフィルター圏である．
また，小圏 I が λ-小 (λ-small)であるとは，射の集合の濃度 |mor(I)|が λ未満であるときをい
う．特に λ = ℵ0 のとき，ℵ0-小圏のことを有限圏 (finite category)という．

補題 A.2 (補題 1.6). 圏 J に対して，次は同値である：

(i) J は λ-フィルター圏である．
(ii) 任意の λ-小な部分圏 I ⊂ J に対して，包含関手 ι : I ↪→ J 上の余錐が存在する．

Proof. (ii) ⇒ (i): 空な部分圏 I = ∅を考えれば，その上の余錐の存在から J 6= ∅であることが
わかる．濃度が λ未満の対象の集合 {il}l∈L に対して，これを J の離散的な λ-小部分圏とみなす
と，その上の余錐の存在から，ある対象 k ∈ J と射 il → k が存在することがわかる．三つ目の条
件も同様である．
(i) ⇒ (ii): λ-小部分圏 I ⊆ J を取る．I = ∅のときその上の余錐が存在することは明らかだか
ら，I 6= ∅としてよい．まず，|ob(I)| < λだから，フィルター圏の二つ目の条件より，対象 k ∈ J

*6 無限性を仮定しない場合でも正則基数は定義できるが，本ノートでは正則基数といえば無限正則基数を指すものとす
る．なお無限性を仮定しない場合，有限基数はすべて正則になる．
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および各 i ∈ I ごとに J の射 vi : i → k が存在する．次に，対象 i ∈ I を固定する．射の集合
{vi : i → k} ∪ {vi′ ◦ w : i → i′ → k}w∈HomI(i,i′) を考えると，この射の集合の濃度は高々 λ未満
であるから，三つ目の条件より J の射 xi : k → ki が存在して，任意の w ∈ HomI(i.i

′)について

i k ki

i′ k

vi

w

xi

vi′

xi

が可換になる．固定を外して対象の集合 {ki}i∈I を考えると，これも濃度が高々 λ 未満であるか
ら，再び二つ目の条件より対象m ∈ J および各 i ∈ I ごとに J の射 yi : ki → mが存在する．射
の集合 {yi ◦ xi : k → ki → m}i∈I に対して，再び三つ目の条件より J の射 z : m → nが存在し
て，任意の i.i′ ∈ I について

k ki m

ki′ m n

xi

xi′

yi

z

yi′ z

が可換になる．このとき，φi := z ◦ yi ◦ xi ◦ vi と置くと，任意の I の射 w : i→ i′ に対して

i k ki m n

i′ k ki′ m

vi

w

xi yi z

vi′

xi

xi′ yi′

z

が可換となるから，{φi}i∈I は I 上の余錐となる．

系 A.3. 圏 J に対して，次は同値である：

(i) J はフィルター圏である．
(ii) 任意の有限部分圏 I ⊆ J に対して，包含関手 ι : I ↪→ J 上の余錐が存在する．

Proof. 補題 A.2で λ = ℵ0 とすればよい．

フィルター圏上の余極限は，一般の余極限に比べて比較的記述しやすい．

命題 A.4. (λ-)フィルター小圏 J と関手 F : J → Setに対して，次が成り立つ．

(1) 余積∐
j∈J F (j) 上の関係 ≈ を，元 x ∈ F (j) と x′ ∈ F (j′) について，ある対象 k ∈ J

と射 u : j → k，u′ : j′ → k であって F (u)(x) = F (j′)(x′) となるものが存在するとき
x ≈ x′ であるとして定める．このとき関係 ≈は同値関係である．

(2) 商集合 C :=
∐

j F (j)/≈ および自然な写像 ιj : F (j) → C ; x 7→ [x] の族の組 (C, (ιj)j)

は F の余極限である．ここで [x]は C における x ∈ F (j)の同値類である．
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Proof. (1) 関係 ≈が反射律と対称律をみたすことは明らかだから，推移律をみたすことを示せば
よい．余積 ∐

j F (j) の元 (x ∈ Fj), (x′ ∈ Fj′), (x′′ ∈ Fj′′) に対し x ≈ x′ かつ x′ ≈ x′′ である
とする．このとき対象 k, k′ ∈ J と射 u : j → k，u′ : j′ → k，v : j′ → k′，v′ : j′′ → k′ が存在し
て，F (u)(x) = F (u′)(x′)，F (v)(x′) = F (v′)(x′′)となる．J の図式 (k

u′

←− j′
v−→ k′)を考えると

補題 A.2よりその余錐が存在するから，対象m ∈ J と射 w : k → m，w′ : k′ → mが存在して

j k

k′ m

u′

v w

w′

が可換になる．このとき w ◦ u : j → k → m，w′ ◦ v′ : j′′ → k′ → mを考えると
F (w ◦ u)(x) = F (w)(F (u)(x)) = F (w)(F (u′)(x′))

= F (w′)(F (v)(x′)) = F (w′)(F (v′)(x′′)) = F (w′ ◦ v′)(x′′)

となるから，x ≈ x′′ であることがわかる．
(2) まず (ιj)j が F 上の余錐であることを確認する．任意の J の射 u : j → j′ に対して，

(x ∈ F (j)) ≈ (F (u)(x) ∈ F (j′))であるから，
ιj(x) = [x] = [F (u)(x)] = ιj′(F (u)(x))

となる．よって ιj = ιj′ ◦ F (u)が成り立ち，(ιj)j は F 上の余錐である．
さて別な F 上の余錐 (ξj : F (j) → M)j があるとき，写像 f : C → M を，[x] ∈ C について

x ∈ F (j)のとき f([x]) = ξj(x)となるように定める．実際，x′ ∈ F (j′)に対しても [x] = [x′]で
あるとすると同値関係 ≈の定義より，射 u : j → k，u′ : j′ → k が存在して F (u)(x) = F (u′)(x′)

となることから，f([x]) = ξj(x) = ξk(F (u)(x)) = ξk(F (u′)(x′)) = ξj′(x
′) = f([x′])がわかり，f

は well-definedである．このとき明らかに各 j ∈ J について f ◦ ιj = ξj となる．f がこのような
分解を与える唯一のものであることは明らかであり，よって (C, (ιj)j)は F の余極限となる．

フィルター圏上の余極限をフィルター余極限という．フィルター余極限の最も重要な性質は，
Setにおいてこれが任意の有限極限と交換することである．ここで，小圏からの関手 G : I → Set

の極限は

limG =

{
(xi)i ∈

∏
i∈I

G(i)

∣∣∣∣∣ すべての射 p : i→ i′ について G(p)(xi) = xi′

}
で与えられていたことを思い出そう．

定理 A.5 (定理 1.7). 集合の圏 Setにおいて，λ-フィルター余極限は λ-小極限と交換する．すな
わち，任意の λ-フィルター圏 J と λ-小圏 I，関手 F : I × J → Setに対して，自然な写像

ρ : colim
j∈J

lim
i∈I

F (i, j)→ lim
i∈I

colim
j∈J

F (i, j)

は同型である．
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Proof. 自然な写像 ρは

ρ([(xi)i]) = ([xi])i

(
(xi)i ∈ lim

i∈I
F (i, j) ⊆

∏
i
F (i, j)

)
で与えられる．これが全単射であることを示せばよい．

(全射性) (yi)i ∈ limi colimj F (i, j)を任意に取る (yi ∈ colimj F (i, j))．余極限 colimj F (i, j)の
構成（命題 A.4）から，ji ∈ J と xi ∈ F (i, ji)が存在して [xi] = yi と表せる．対象の集合
{ji}i∈I に対して J が λ-フィルター圏だから，対象 j ∈ J および各 i ∈ I ごとに J の射
ui : ji → j が存在する．I の射 p : i→ i′ に対して，(yi)i は limi colimj F (i, j)の元だから
(colimj F (p, j))(yi) = yi′ となることを用いると

[F (p, ji)(xi)] = (colimj F (p, j))(yi) = yi′ = [x′] = [F (i′, ui′)(xi′)]

となる．これは (F (p, ji)(xi) ∈ F (i′, ji)) ≈ (F (i′, ui′)(xi′) ∈ F (i′, j)) を意味し，対象
kp ∈ J と射 vp : ji → kp，v′p : j → kp が存在して

F (p, vp)(xi) = F (i′, vp)(F (p, ji)(xi)) = F (i′, v′p)(F (i′, ui′)(xi′)) = F (i′, v′p ◦ ui′)(xi′)

となる．射の集合 {v′p ◦ ui : ji → j → kp, vp : ji → kp}p∈mor(I) を考えると，J が λ-フィル
ター圏だから，対象 k̃p ∈ J と射 ṽp : kp → k̃p が存在して，

ṽp ◦ v′p ◦ ui = ṽp ◦ vp

が成り立つ．さらに射の集合 {ṽp ◦ v′p : j → kp → k̃p}p∈mor(I) に対してこれを J の λ-

小図式と思うと，命題 よりその余錐が存在することから，各 p ∈ mor(I) ごとに J の射
wp : k̃p → mが存在して，任意の p, p′ ∈ mor(I)に対して wp ◦ ṽp ◦ v′p = wp′ ◦ ṽp′ ◦ v′p′ と
なる．
このとき w := wp ◦ ṽp ◦ v′p : j → kp → k̃p → m と置くと，これは p の取り方に依らず
well-definedであり，任意の I の射 p : i→ i′ に対して

F (p,m)(F (i, w ◦ ui)(xi)) = F (p, wp ◦ ṽp ◦ v′p ◦ ui)(xi)

= F (p, wp ◦ ṽp ◦ vp)(xi)

= F (i′, wp ◦ ṽp ◦ v′p ◦ ui′)(xi′)

= F (i′, w ◦ ui′)(xi′)

が成り立つ．これは (F (i, w ◦ i′)(xi))i ∈ limi F (i,m)となるということであり，このとき

ρ([(F (i, w ◦ i′)(xi))i]) = ([F (i, w ◦ i′)(xi)])i = ([xi])i = (yi)i

となる．したがって ρは全射である．
(単射性) (xi)i ∈ limi F (i, j)，(x′

i)i ∈ limi F (i, j′)に対して，ρ([(xi)i]) = ρ([(x′
i)i])であるとする．

このとき各 i ∈ I について [xi] = [x′
i]であり，対象 ki ∈ J と射 ui : j → ki，u′

i : j
′ → ki が
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存在して，F (i, ui)(xi) = F (i, u′
i)(x

′
i)となる．射の集合 {ui : j → ki}i ∪{u′

i′ : j
′ → ki}i を

J での λ-小図式だとみなすと，命題 A.2より余錐が存在することから，対象 k ∈ J および
各 i ∈ I ごとに射 vi : ki → k が存在して，任意の i1, i2 ∈ I について vi1 ◦ ui1 = vi2 ◦ ui2，
vi1 ◦ u′

i1
= vi2 ◦ u′

i2
が成り立つ．このとき w := vi ◦ ui，w′ := vi ◦ u′

i とすると，

F (i, w)(xi) = F (i, vi)(F (i, ui)(xi)) = F (i, vi)(F (i, u′
i)(xi)) = F (i, w′)(x′

i)

となる．これは (limi(F (i, w))((xi)i)) = (limi(F (i, w′))((x′
i)i))となることを意味し，よっ

て colimj∈J limi∈I F (i, j)の元として [(xi)i] = [(x′
i)i]となるから，ρは単射である．

系 A.6. 集合の圏 Setにおいて，フィルター余極限は有限極限と交換する．

Proof. 定理 A.5で λ = ℵ0 とすればよい．

実はこの逆も成り立ち，任意の有限極限と交換するような余極限は自動的にフィルター余極限に
なることが知られている．これを確認しよう．

補題 A.7. 小圏J 上の表現可能関手HomJ (j,−) : J → Setについて，colimHomJ (j,−) = {∗}
が成り立つ．

Proof. 任意の X ∈ Setに対し，米田の補題より自然な全単射

HomSet(colimHomJ (j,−), X) = Nat(HomJ (j,−),∆X)

∼= ∆X(j) = X = HomSet({∗}, X)

があるから，colimHomJ (j,−) ∼= {∗}となる．

命題 A.8. 任意の λ-小極限と交換する余極限は λ-フィルター余極限である．すなわち，小圏 J
に対して次は同値である．

(i) J は λ-フィルター圏である．
(ii) 余極限を取る関手

colimJ : Fun(J , Set)→ Set

は λ-小極限を保つ．

Proof. (i) ⇒ (ii): 定理 A.5より従う．
(ii) ⇒ (i): 命題 A.2 の同値な条件を確認すればよい．λ-小部分圏 I ⊆ J に対して，関手

F : Iop ιop−−→ J op y−→ Fun(J , Set) を考える．colimJ は λ-小極限を保つことと，補題 A.7 より
colimJ ◦y ∼= ∆{∗} であること，および極限と極限が交換することから

colimJ (limI F ) ∼= limI(colimJ ◦F ) = limI(colimJ ◦y ◦ ιop) ∼= limI(∆{∗}) ∼= {∗}
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となる．特に余極限の構成から，集合の全射∐
j∈J

(limF )(j) ↠ {∗}

が存在し，ある j ∈ J について (limF )(j) 6= ∅である．ここで

(limF )(j) = lim(Iop ιop−−→ J y−→ Fun(J , Set) Evj−−→ Set)

∼= lim(Iop ιop−−→ J Hom(−,j)−−−−−−→ Set)

= limHom(ι(−), j) = Cocone(ι, j)

であるから，Cocone(ι, j) 6= ∅となる．すなわち ι上の余錐が存在し，J は λ-フィルター圏であ
る．

定義 A.9. 圏 C が連結 (connected)であるとは，任意の対象 c, c′ ∈ C に対して，それらをつな
ぐ射の zigzag

c = c0 → c1 ← c2 → · · · ← cn = c′

が存在するときをいう．

例えば，λ-フィルター圏は連結である．
圏 C の連結成分の集合を π(C) で表すとき，C が連結であるとは π(C) = {∗} でということで
ある．

補題 A.10. 関手 F : C → Setに対して，colimF ∼= π(Elts(F ))が成り立つ．

Proof. Setでの余極限の構成を思い出すとわかる．

定義 A.11. 関手 F : C → D が終関手 (final functor)であるとは，任意の対象 d ∈ D について
コンマ圏 d ↓ F が空でなくかつ連結であるときをいう．

命題 A.12. 関手 F : C → D に対し，次は同値である．

(i) F は終関手である．
(ii) D からの任意の関手 T : D → E と任意の e ∈ E に対して，写像

− ◦ F : HomFun(D,E)(T,∆e)→ HomFun(C,E)(T ◦ F,∆e)

が全単射である．
(iii) 任意の関手 T : D → Setに対して，colim(T ◦ F ) ∼= colimT が成り立つ．
(iv) 任意の対象 d ∈ D に対して，colimHomD(d, F (−)) = {∗}が成り立つ．

Proof. (i) ⇒ (ii): まず単射であることを示そう．自然変換 α, α′ : T ⇒ ∆e に対して，αF = α′F

であるとすると，各 c ∈ C について αFc = α′
Fc : T (Fc) → e である．任意の d ∈ D に対し，
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d ↓ F 6= ∅ であることから，ある対象 c ∈ C と D の射 f : d → Fc が存在する．このとき自然性
から

αd = αFc ◦ T (f), α′
d = α′

Fc ◦ T (f)

が成り立つ．いま αFc = α′
Fc であるから αd = α′

d となる．よって自然変換として α = α′ である．
次に全射であることを示す．自然変換 β : TF ⇒ ∆e を任意に取る．各 d ∈ D について

d ↓ F 6= ∅より，対象 (cd, fd) ∈ d ↓ F，すなわち対象 cd ∈ C と D の射 fd : d → F (cd)が存在す
る．このとき射 αd : T (d) → eを αd := βcd ◦ T (fd)とすると，これは d ↓ F の対象の取り方に依
らず well-definedである：実際，別な対象 (c′d, f

′
d) ∈ d ↓ F があるとき，d ↓ F が連結であること

から，射の zigzag

(cd, fd) = (c0, f0)
u1−→ (c1, f1)

u2←− (c2, f2)
u3−→ · · · un←−− (cn, fn) = (c′d, f

′
d)

が存在する．ここで一つの射 u : (cd, fd) → (c′d, f
′
d) があるとしても一般性は失われない．このと

き射 u : cd → c′d は u ◦ fd = f ′
d をみたし，自然性から βcd = βc′d

◦ FT (u)が成り立つから，

βcD ◦ T (fd) = βc′d
◦ FT (u) ◦ T (fd) = βc′d

◦ T (f ′
d)

となり，αd は d ↓ F の対象の取り方に依らない．
このように構成した射の族 {αd}d∈D を考える．任意の D の射 g : d → d′ に対して，

(cd, fd), (cd′ , fd′ ◦ g) ∈ d ↓ F であるから，
αd = βcd′ ◦ T (fd′ ◦ g) = βcd′ ◦ T (fd′) ◦ T (g) = αd′ ◦ T (g)

となる．よって {αd}dは自然変換 α : T ⇒ ∆eをなす．さらに各 c ∈ C に対し，(c, idFc) ∈ Fc ↓ F
であるから

αFc = βc ◦ T (idFc) = βc

となる．よって αF = β となり，全射性が確かめられた．
(ii) ⇒ (iii): HomFun(D,Set)(T,∆e) = Cocone(T, e)であるから明らか．
(iii) ⇒ (iv): T = HomD(d,−)を考えれば，補題 A.7より

colimHomD(d, F (−)) ∼= colimHomD(d,−) = {∗}

となる．
(iv) ⇒ (i): 補題 A.10を用いると

π(d ↓ F ) = π(Elts(HomD(d, F (−)))) ∼= colimHomD(d, F (−)) = {∗}

となるから，d ↓ F は空でなくかつ連結である．

系 A.13. F : C → Dを終関手とするとき，任意の関手 T : D → E に対して，次の式のいずれか
の辺が存在すればもう一方も存在して，同型

colim(T ◦ F ) ∼= colimT

が成り立つ．
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Proof. 命題 A.12より明らか．

命題 A.14. 関手 F : C → D が終関手であるとき，C が λ-フィルター圏ならば D も λ-フィル
ター圏である．

Proof. 関手 F が終関手であることから，系 A.13より自然同型

Fun(D, Set) Set

Fun(C, Set)

colimD

−◦F

∼=

colimC

が成り立つ．いま C は λ-フィルター圏であるから，命題 A.8より colimC は λ-小極限を保つ．関
手 − ◦ F はすべての極限を保つから，colimD も λ-小極限を保つ．したがって命題 A.8より D も
λ-フィルター圏である．

命題 A.15. フィルター圏 C と関手 F : C → D に対して，次は同値である．

(i) F は終関手である．
(ii) 任意の d ∈ D について，コンマ圏 d ↓ F はフィルター圏である．
(iii) 次の条件が成り立つ：

(a) 任意の d ∈ D に対して，対象 c ∈ C と D の射 d→ Fcが存在する．
(b) D の射 f, g : d → Fcに対して，C の射 u : c → c′ が存在して，F (u) ◦ f = F (u) ◦ g
となる．

Proof. (iii) ⇒ (i): フィルター圏は連結であるから明らか．
(i) ⇒ (iii): F が終関手であることから，任意の d ∈ D について d ↓ F は空でなくかつ
連結である．特に (a) が成り立つ．D の射 f, g : d → Fc に対して，これらをコンマ圏の対象
(c, f), (c, g) ∈ d ↓ F とみなす．このとき連結性から，射の zigzag

(c, f) = (c0, f0)
u1−→ (c1, f1)

u2←− (c2, f2)
u3−→ · · · un←−− (cn, fn) = (c, g)

が存在する．このとき C における図式

c = c0
u1−→ c1

u2←− c2
u3−→ · · · un←−− cn = c

について，C がフィルター圏であることから，その余錐 (vi : ci → c̃)i=1,...,nが存在する．このとき，

F (v0) ◦ f = F (v1 ◦ u1) ◦ f0 = F (v1) ◦ F (u1) ◦ f0 = F (v1) ◦ f1
= · · · = F (vn) ◦ fn = F (vn) ◦ g

となる．射の集合 {v0, vn : c → c̃}を考えると，C がフィルター圏であるから，射 w : c̃ → c′ が存
在して w ◦ v0 = w ◦ vn となる．u := w ◦ v0 とおくと，

F (u) ◦ f = F (w) ◦ F (v0) ◦ f = F (w) ◦ F (vn) ◦ g = F (u) ◦ g
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となり，条件 (b)が成り立つ．
(iii) ⇒ (ii): 任意の対象 d ∈ D をとる．まず，条件 (a) より d ↓ F 6= ∅ である．次に，対
象 (c, f), (c′, f ′) ∈ d ↓ F を任意にとる．C がフィルター圏であることから，対象 c′′ ∈ C と射
u : c → c′，u′ : c′ → c′′ が存在する．このとき F (u) ◦ f, F (u′) ◦ f ′ : d → F (c′′) を考えると，条
件 (b)より C の射 v : c′′ → c̃が存在して，F (v) ◦ F (u) ◦ f = F (v) ◦ F (u′) ◦ f ′ となる．このとき
f̃ := F (v) ◦ F (u) ◦ f とおけば，コンマ圏 d ↓ F における射

(c, f)
v◦u−−→ (c̃, f̃)

v◦u′

←−−− (c′, f ′)

が得られることがわかる（この時点で d ↓ F が連結であることがわかる）．最後に，d ↓ F におけ
る平行射 u1, u2 : (c, f)→ (c′, f ′)を考える．C がフィルター圏であることから，C の射 v : c′ → c′′

が存在して v ◦ u1 = v ◦ u2 となる．このとき f ′′ := F (v) ◦ f ′ とおけば，v は d ↓ F の射
v : (c′, f ′) → (c′′, f ′′) となり，d ↓ F の射として v ◦ u1 = v ◦ u2 が成り立つことがわかる．した
がって d ↓ F はフィルター圏である．

系 A.16. D をフィルター圏とし，d ∈ D でのコスライス圏 d/D を考える．このとき d/D は
フィルター圏であり，自然な射影 π : d/D → D は終関手である．

Proof. 恒等関手 IdD : D → D は明らかに終関手であるから，命題 A.15より，d ↓ IdD = d/D は
フィルター圏である．
自然な射影 π : d/D → D が終関手であることを示すには，命題 A.15 (iii)が成り立つことを確
認すればよい．任意の d0 ∈ D に対して，D がフィルター圏であることから，D の射 g : d → d′，
g0 : d0 → d′ が存在する．このとき g をコスライス圏の対象 (d′, g) ∈ d/D とみなせば，g0 は射
d0 → π(d′, g) となる．よって条件 (a) は成り立つ．次に，D の射 g, h : d0 → c = π(c, f) を考え
る．射の集合 {g, h : d0 → c}について D がフィルター圏であることから，射 u : c → d′ が存在し
て u◦g = u◦hとなる．この uを d/Dの射 u : (c, f)→ (d′, u◦f)とみなせば，π(u)◦g = π(u)◦h
となり，条件 (b)も成り立つ．したがって π は終関手である．

命題 A.17 (命題 1.9). λ を正則基数とする．λ-フィルター圏 J の充満部分圏 J ′ ⊆ J に対し
て，条件

• 任意の対象 j ∈ J に対し，ある対象 k ∈ J ′ と J における射 j → k が存在する

が成り立つとき，J ′ は λ-フィルター圏であり，包含 J ′ ↪→ J は終関手である．

Proof. 補題 A.2 より，任意の λ-小な部分圏 I ⊂ J ′ に対して，包含 ι : I ↪→ J ′ 上の余錐が存
在することを示せばよい．I は J の部分圏でもあるから，I ↪→ J の余錐 {φi : i → j}i∈I が
存在する．仮定から，ある対象 k ∈ J ′ と射 u : j → k が存在する．このとき J における余錐
{u ◦ φi : i→ k}i∈I を考えると，J ′ が J の充満部分圏であることからこれは J ′ における余錐と
みなせる．したがって J ′ も λ-フィルター圏である．
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包含関手 J ′ ↪→ J が終関手であることを示すためには，命題 A.15 (iii)が成り立つことを確認
すればよい．条件 (a)は仮定より明らか．J ′ の対象 k ∈ J ′ と J の射 f, g : j → k に対して，J
がフィルター圏であることから，J の射 u : k → j′ が存在して u ◦ f = u ◦ g となる．仮定より
k′ ∈ J ′ と J の射 v : j′ → k′ が取れる．このとき v ◦ uは J ′ の射であり，(vu) ◦ f = (vu) ◦ g を
みたす．よって条件 (b)も成り立つ．

命題 A.18. 任意の λ-フィルター圏 J に対して，ある有向集合 I と終関手 H : I → J が存在
する．

Proof. [AN82]
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